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Abstract. Anyon gas with interparticle (retarded) Coulomb interaction has been studied. The
resulting system is shown to be a collection of dressed anyons, with a screening factor introduced
in their spin. Close structural similarity with the Chern–Simons construction of anyons has
helped considerably in computing the screening effect. Finally, the present model is compared
with the conventional Chern–Simons construction.

1. Introduction

The possible existence of particles having arbitrary spin and statistics were proved quite
some time ago [1, 2]. However, dynamical model building, on the other hand, has proved to
be rather controversial, with the dispute still continuing. Basically there are two broad lines
along which the models are conceived: (i) the Chern–Simons (CS) construction [3], where
a point charge is coupled to CS electrodynamics. Removal of the auxiliary (or statistical)
CS gauge field renders the particle anyonic. (ii) The construction of minimal anyon field
equations, where one starts from very general physical postulates, such as the mass shell and
Pauli–Lubanski condition for the particle [4]. A variant of the latter scheme is the spinning
particle model [5–7], with which we are concerned in the present letter. The connection
between the latter two is elaborated in [8].

It is important to point out that individually both models represent anyons. The
controversy arises as regards to the nature of the CS gauge field in (i). The contention
of [3], that the only effect of the CS gauge field is to influence the particle statistics and
nothing else, has been debated strongly in [9]. Also the CS scheme fails in the relativistic
theory, relevant for cosmic string problems.

Our result in this letter shows conclusively thatanyons in the presence of genuine
interparticle Coulomb interaction, are dressed as far as their fractional spin (and hence
the statistics parameter) is concerned. The screenedspin, S = αj , with α = − Q2

16π2ε0mc2 ,
whereas in the spinning particle models [5, 6], the spin isS = j , wherej is the Lagrangian
spin parameter in (1). HereQ andm are the charge and mass of the anyon,c is the velocity
of light and ε0 is a characteristic property of the vacuum, (to be elaborated later). The
dimensionless quantityα is the screening factor. We have considered a two-particle system
but generalization to a many-particle system is straightforward.

Also the other interesting feature of the model is its structural similarity with CS
construction [2]. We show that in the slow-moving and large-mass particle limit, the
Coulomb field is structurally identical to the CS gauge field solution in [2], with the
identification of the CSθ parameter,θ = − 4πε0mc

2

j
. The crucial difference lies in the

qualitative nature of the CS gauge field and the Coulomb field considered here. The former
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is sort of a fictitious gauge field [10], that couples to the fictitious charge of the particle,
whereas the latter is the real Coulomb field, responsible for the Lorentz force between
particles. Apart from this, there is the usual logarithmic Coulomb potential. Note that in
the conventional CS scheme, the particles are endowed with the fractional spinS = Q2

4πθCS

whereθCS is the arbitrary CS parameter andQ is the fictional charge that couples to the
CS statistical gauge field. One also recovers the logarithmic Coulomb interaction [10]. The
above-mentioned identification helps us to use the CS results directly to compute explicitly
the screening factorα. The connection between the conventional CS scheme and our model
will be elaborated later. Although, some of the major results of this paper have appeared in
[11], the implications and consequences, discussed in the conclusion, were not emphasized
before.

The spinning particle Lagrangian proposed by us in [6] is(c = 1),

L =
√
m2u2+ 1

2j
2σ 2+mjεµνλuµσνλ (1)

where the velocity and canonical momenta are defined as

uµ = drµ

dτ
σµν = 3µ

λ 3̇
λν (2)

Pµ = − ∂L
∂uµ

Sµν = − ∂L

∂σµν
. (3)

(rµ,3µ,ν) is a Poincaŕe group element, as well dynamical variables with the property,
33T = 3T3 = g, whereg is the Minkowski metricg00 = −g11 = −g22 = 1.

The action in (1),
∫
L dτ is invariant under reparametrizations of the arbitrary parameter

τ → τ ′ = f (τ). The details of the constraint analysis can be found in [6]. We will use
the relevant Dirac brackets (DB) as and when necessary. Let us briefly demonstrate the
appearance of the arbitrary phase. The set of second-class constraints (SCC) and first-class
constraints (FCC) are

SµνPν ≈ 0 30µ − P
µ

m
≈ 0 (4)

P 2−m2 ≈ 0 εµνλSµνPλ −mj ≈ 0. (5)

Let us transform the set of SCCs in (4) to strong equality. The induced DB relevant to us,

{3µν, S12} = (3µ1gν2−3µ2gν1)

+ 1

m2
(P νP 13µ2− P νP 23µ1− Pρ3µρP 1gν2+ Pρ3µρP 2gν1) (6)

in the particle rest frame,P i = 0, P 0 = m, reduces to

{311, S12} = 312 {322, S12} = −321

{312, S12} = −311 {321, S12} = 322.
(7)

Using the rest frame3’s, i.e.301 = 302 = 0, 300 = 1 we obtain the relations,

310 = 320 = 0 (312)2+ (311)2 = (321)2+ (322)2 = 1

311321+312322 = 0.
(8)

Hence, in the reduced phase space we can parametrize the remaining independent variables
by,

312 = cosφ 311 = sinφ S12 = ∂

∂φ
(9)
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whereS12 is the Pauli–Lubanski scalar in the rest frame,

εµνλSµνPλ

m

∣∣∣∣
rest frame

= S12P0

m
= S12.

Also from counting the number of independent degrees of freedom in phase space we see
that out of three each (independent)Sµν and3µν variables one each ofS and3 remain,
since out of the set of six SCCs in (4) onlytwo from each set (totalling four) are independent.
So far the FCCs have remained intact. This is exactly the parametrization employed by
Plyushchay in [5]. This3 variable (or equivalentlyφ), gives rise to the arbitrary phase.
This is consistent with the fact [12] that specifically in 2+ 1 dimensions, the number of
(phase space) degrees of freedom for a particle with fixed mass and spin is the same as that
of a massive spinless particle. Here the remaining degrees of freedom, i.e.φ andS12, can
be removed by choosing a gauge for the Pauli–Lubanski FCC. However, the effect of the
spin variables present in (1) manifest itself in the non-trivial DBs, which gives rise to the
spin contribution in the total angular momentum.

Let us elaborate on the last point, which also brings about a qualitative change in the
nature of the system, that is theP and T violation. Apart from (6), the other crucial
modification occurs in therµ-DB,

{rµ, rν} = −Sµν
m2

. (10)

This non-trivial algebra necessitates a change in the conventional expression of the angular
momentum,

Jµ = εµνλ(rνP λ + 1
2S

νλ) = εµνλrνP λ + Sµ. (11)

This is the conserved angular momentum, which can be directly inferred from the Lagrangian
(1) [6]. The extra term is needed to maintain the proper angular momentum algebra. This
is the fractional spin term. On the other hand, as we are using DBs, the set of SCCs can
now be incorporated as strong relations and we can totally discard the spin variables by the
relation,

Sµ = j√
P 2
Pµ = j

m
Pµ. (12)

(One can check this relation to be true in the DB sense. A subtle point to note is that
P 2 = m2 is allowed only after the DBs have been computed.) But in therµ − Pν subspace
of variables, the full algebra with the identification in (12), the DB (10) and the angular
momentum (11) constitute a magnetic monopole [13]. Basically, the simultaneous presence
of electric and magnetic charges is the origin of theP and T violation [14]. In fact,
heuristically it is remarked [15] that this non-commutingr-algebra is an analogue of the
non-commuting velocities in the presence of a magnetic monopole, with the monopole
strength replaced byj

m2 . A point-charge magnetic monopole interaction term can also be
introduced [16] in a (non-relativistic) Lagrangian, to simulate the same effect which is done
here by the spin variables. The interaction term, being a total derivative, does not affect the
equations of motion but changes the angular momentum spectrum in a similar way [16].

As is clearly shown in [13], different first-order Lagrangians are allowed, whose
symplectic structures are identical to the one used here. Our Lagrangian is one such (possibly
more down to earth) alternative, being a coordinate space second-order one. In fact, it is
quite akin to the(3+ 1)-dimensional spinning particle model, proposed in [17]. As has
been emphasized in [13], the vital elements for a description of anyons are the mass shell
condition and the symplectic structure. All the models mentioned, as well as the present
one, are equivalent in this respect.
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The complexities in the quantum CS gauge theory of anyons provided the impetus for
the search of more economical schemes and the spinning particle (or symplectic or magnetic
monopole) approach is indeed a viable one.

Note an interesting departure in the constraint structure from a parent(3+1)-dimensional
model [18], where the spin (FC) constraint appeared as a combination of the SCCs
SµνPν ≡ 0, due to some non-trivial algebraic identities. The latter are absent in 2+ 1
dimensions, as a result of which the spin constraint comes here independently, i.e. it is not
obtainable from the other FCC and SCCs, in (4) and (5).

Let us now move to the main body of our work. Hereafter we will use rationalized
MKS units and keepc and h̄ as they come. This will be useful for the comparison of the
final results and churning out numerical estimates. We use the planar Coulomb law as

FCoul = Q1Q2

2πε0r
n (13)

wherer = rn is the separation between the chargesQ1 andQ2, andε0 is the ‘permittivity’
of the vacuum. FCoul denotes the force between the particles. This Coulomb law is
compatible with the Gauss law in a plane,∇·E = ρ

ε0
, whereE andρ are the electric field and

charge density respectively. We introduceµ0 andε0 as the ‘permeability’ and ‘permittivity’
of the vacuum, to keep the relations same as their(3+1)-dimensional counterpart. We only
use the relationε0µ0 = 1

c2 . Denoting by [O] the dimension of O, we note that

[ε0] = C2

M(L/T )2
[φ] = M(L/T )2

C
[Ai ] = M(L/T )

C
.

Here,M,L, T ,C are mass, length, time units and Coulomb respectively.φ andAi are the
scalar and vector potentials. We have the standard relations,

E = −∇φ − Ȧ B = ∇XA.
HereB is the magnetic field.

We briefly show the construction of the relativistic Darwin Lagrangian for a system of
two interacting point charges in a plane. As the results have appeared in [11], we simply
incorporatec, ε0 andµ0 in their respective places. The retarded logarithmic potentials are,

φ = 1

2πε0

∫
d2r ρ

(
r, t − r

c

)
ln
r

r0
(14)

A = µ0

2π

∫
d2r ρ

(
r, t − r

c

)
v ln

r

r0
(15)

where r0 denotes some length scale where the potential due to a point charge vanishes.
Expanding in terms ofv the particle velocity and keeping terms up to O( v

2

c2 ), with the
charge densityρ = Qδ(r − rparticle), we obtain

φ = Q

2πε0

[
ln
r

r0
− 1

c

(
r ln

r

ro

).
+ 1

2c2

(
r2 ln

r

r0

)..]
A = µ0

2π
Qv ln

r

r0
.

Performing a gauge transformation,

φ→ φ′ = φ − ∂f
∂t

A→ A′ = A+∇f
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such that,

∂f

∂t
= Q

2πε0

[
−1

c

(
r ln

r

r0

).
+ 1

2c2

(
r2 ln

r

r0

)..]
∇f = Q

2πε0

(
−n
c

ln
r

r0
− n
c

)
+ Q

4πε0c2

(
2nr ln

r

r0
+ r

).
the retarded potentialφ is reduced to the standard Coulomb form,

φ′ = Q

2πε0
ln
r

r0
(16)

A′ = − Q

2πε0

[
n

c2

(
n · v + c

(
1+ ln

r

r0

))
+ v

c2

]
. (17)

The interaction is simply of the minimal current-gauge field formJµA
′µ, whereJ0 = ρ =

Qδ(r − rp),J = Qvδ(r − rp) andA
′µ is the above set, (16) and (17). Thus, to O( v

2

c2 ),
the Lagrangian, or the Hamiltonian obtained just below, incorporates the effect of Coulomb
interaction between two charges, taking into account the relativistic corrections via the
retarded time.

The two-particle Darwin Hamiltonian is,

H = p2

m
− p4

4m3c2
+ Q2

2πε0
ln
r

r0
+ Q2

2πε0c2

[
r · p
mr

(
r · p
mr
+ c

(
1+ ln

r

r0

))
− p2

2m2

]
.

(18)

Note that the correction terms inA′ are qualitatively different from their(3+1)-dimensional
counterpart [19]. This has also induced the difference in the Hamiltonian correction terms.

So far the effect of the particle spin has not been taken into account. Now we do this
via a non-canonical transformation. We rewrite (1),

L = c2

√(
m2u2

c2
+ j

2σ 2

2c4
+ mj
c3
εµνλuµσνλ

)
(19)

with the dimensions of the phase-space variables being,

[u] = L

T
[σ ] = [33̇] = T −1 [Sµν ] = [j ] = ML2

T
[Pµ] = ML

T
.

With P 2 = m2c2 andS2 = 2j2, the DBs relevant to us are [6],

{rµ, rν} = − Sµν

m2c2
= − j

m3c3
εµνλPλ {rµ, P ν} = gµν {Pµ, P ν} = 0. (20)

Invoking the quantization prescription thati
h̄
{DB} → [commutator], we arrive at the

following commutators,

[rµ, rµ] = ih̄

m2c2
Sµν = ih̄j

m3c3
εµνλPλ [rµ, P ν ] = −ih̄gµν [Pµ, P ν ] = 0. (21)

One can ‘solve’ the algebra by introducing the non-canonical transformation [5, 11],

ri = qi + j

m2c2
εijPj P i = pi (22)

where(q, p) constitute a canonical pair with the non-zero commutator [qi, pj ] = −ih̄gij .
The transformation simulates the spin property of the particle, as it has originated from the
non-trivial [ri, rj ] commutator in (21), which was crucial in producing the spin part of the
total angular momentum. We will come to this point again. Note that although we have



L826 Letter to the Editor

a canonical position coordinateq, the consequence of this is thatq does not transform as
a position vector. However, this departure can be quite small for slowly moving heavy
particles.

This modifiesH to

Hspin= H
(
P i = pi, ri = qi + j

m2c2
εijpj

)
= p2

m
− p4

4m3c2
+ Q2

2πε0

[
ln
q

r0
(1+ α)+ α(1+ α)

+ j

mcq
β

(
1− 2α2− α ln

q

r0

)
+
(

j

mcq

)2

α2β2−
(

j

mcq

)2

αβ2

]
(23)

where the two dimensionless variablesα andβ are,

α = q · p
mcq

≈ O
(v
c

)
β = εij qipj

mcq
≈ O

(v
c

)
.

Let us define,

Ai = Qj

4πε0mc2q2
εij qj = σ ε

ij qj

q2

ai =
(

1− α ln
q

r0
− 2α2

)
Ai

(24)

and rewriteHs as,

Hs = 1

m
(p−Qa)2+ Q2

2πε0

[
ln
q

r0
+ α

(
1+ ln

q

r0

)
+ α2−

(
j

mcq

)2

αβ2

+
(

j

mcq

)2

α2β2

]
−
(

Qj

4πε0mc2

)2
Q2

mq2

(
1− α ln

q

r0
− 2α2

)2

. (25)

The identification [11] of our system with that of a point charge interacting with CS
gauge field is now obvious. Theα-independent term inαi is the explicit solution of the CS
gauge field. Hence we can identify [4],

θ = −Q
σ
= −4πε0mc

2

j
(26)

whereθ is the CS parameter in the CS Lagrangian,

LCS= cθ

2

∫
d2r εµνλ∂µAνAλ.

Also the magnetic flux connected to the charged particle is8, where

8 = − Qj

2ε0mc2
. (27)

Note the8 is of the proper dimension of magnetic flux. This is one of our cherished results,
where we have been able to obtain8 in terms of the spinning particle parameters by simply
borrowing the CS result.

Let us now elaborate on the previously advertised dressing induced by the Coulomb
interaction. Since we already identified our system with point charge CS system, the results
of the latter can be directly used. According to CS theory [20], the physical states can
be shown to be carrying an angular momentum eigenvalueS, which is related to the CS
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parameterθCS by S = e2

4πθCS
. Heree is the fictional charge of the particle that couples to the

CS gauge field to generate the anyon. This is the well known fractional spin. In our case,

S = e2

4πθCS
= − Q2j

16π2ε0mc2
. (28)

Note that ifS = sh̄,

s = e2

4πh̄θCS
= e

2θCS(h/e)
= 8

4π80

where80 is the flux quantum and8 is obtained from (27).
However, in the case of the minimal spinning particle model [5, 6], due to the non-

trivial [ri, rj ] commutator, the angular momentum is modified by the spin contribution in
the following way,

Jµ = −εµνλrνpλ − j√
p2
pµ. (29)

Construction of the Pauli–Lubanski scalarp · J = −jmc clearly shows that the particle
spin is justj . Hence in comparison with (28), we notice the extra parameters or dressings
that have appeared as a result of the Coulomb interaction. This is the main result of the
present work.

Let us now put the CS and our work in their proper perspectives. Our model of
interacting anyons can be cast in the following form,

L =
[ 2∑
i=1

(
1

2
mv2

i + e(vi ·A−A0)

)
+ cθCS

2

∫
d2r εµνλAµ∂νAλ

]

+
[ 2∑
i=1

Q(vi ·A−A0)

]
(30)

where for simplicity we have used non-relativistic expressions. The fictitious chargee and
gauge fieldsAµ make the particles anyonic, andQ andAµ are their genuine charges and
Coulomb interaction. For consistency, when computingAµ, one should consider the anyon
spin as well. This will be complicated if retardation effects are to be taken into account.

On the other hand, we have started with a spinless interacting system with genuine
charges and evaluated the (Darwin) Lagrangian with retardation effects duly taken care of.
Subsequently we turn the whole system anyonic (via(22)), and obtain the screening effect.
The fact that our interacting anyon system, in the lowest order, is structurally similar to the
CS system, has made life easier, by allowing us to borrow previous results.

We now conclude with the following comments.
(i) We have considered a system of interacting anyons, following our spinning particle

model and have shown that there is a screening effect in the anyon spin, arising from mutual
Coulomb interactions.

(ii) We have shown how our system should be compared with the CS construction.
(iii) We have not used thec = h̄ = 1 convention and this has made some of the relations

look clumsy. We have persisted with this since all the dimensions of electromagnetic
quantities have been overhauled, as we have taken the planar logarithmic Coulomb potential
to be fundamental.

(iv) Unless there is a proper definition of planarε0 with a numerical value, it is of no
use to speculate about numerical estimates.

(v) Finally, it would be interesting to see if the CS construction described above
reproduces this screening.
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